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Abstract: This paper deals with the method of spherical harmonics (P1-approximation) as the way 

that is used to solve the equation of transfer radiation energy in arc plasma. To calculate the  

frequency variable in the equation of transfer the multigroup method is supposed to be used. Based 

on the combination of these two methods the partial differential equations as Bessel modified ones 

are solved. It enables to obtain an approximate solution of required accuracy. 
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1. INTRODUCTION 

The equation of transfer radiation energy is considered to be complicated; in general the spectral 

intensity, which is the dependent variable of this equation, depends on the independent variables 

( r


, , 


). One has to approximate the equation of transfer, either analytically or numerically, in 

order to obtain a solution. The method of spherical harmonics (PN-approximation) which is based 

on the transformation the equation of transfer into a set of simultaneous partial differential  

equations enables to obtain an approximate solution of required accuracy. 

2. MULTIGROUP P1-APPROXIMATION 

In P1-approximation the angular dependence of the specific intensity is supposed to be represented 

by the first two terms in a spherical harmonic expansion 
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where 1  and 2


 correspond to the density of the radiation field multiplied by velocity of light c, 

and to the radiation flux. 

The spectral density of the radiation field is  
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Similarly, the expression for radiation flux is 
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Therefore, we may rewrite equation (1) in terms of radiation field density and radiation flux 




),(
4

3
),(

4
),,( 





  rWrU

с
rI . (4) 



One of the methods to calculate the frequency variable in the equation of transfer is the multigroup 

method [1], which leads to its discretization. One assigns a given photon to one of G frequency 

groups and all photons within a given group are treated the same from the point of absorption  

properties of the medium; the absorption coefficient for given frequency group n is supposed to be 

constant with certain average value 
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For P1-approximation the multigroup equations of transfer have the form 
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From the equation (7): 
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To obtain the elliptical partial differential equation one inserts the previous expression into the  

equation (6): 
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Let's rewrite 
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The radiation flux is expressed 
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In case of cylindrically symmetrical isothermal plasma this equation depends only on one variable 

– radial range r 
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Let’s express div grad u in cylindrical coordinate system 
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Due to the fact that functions nk  a nB  are dependent on the arc temperature and it decreases from 

the axis to the edge they are usually regarded as radial range functions. If we assume (to simplify 

the task) that plasma is isothermal, i.e. the arc temperature remains constant, functions nk  a nB   

also remain constant for the current solution of the equation (11), resp. (12). 

Let’s modify the equation (12) 
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Let’s solve the equation as Bessel inhomogeneous modified one and taking into account that the 

left part equals 0. 
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The solution of the homogeneous equation (14) is 
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The solution of the inhomogeneous equation consists of the solution of the homogeneous equation 

and pu , where pu  is the arbitrary particular solution of the inhomogeneous equation. According to 

the right side of the equation let’s find out the solution in the form 
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After one inserts the previous expression into the equation (16) it’s obtained 
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The resulting solution of the equation (11) is 
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Constants 1C  and 2C  are defined according to the boundary conditions of arc axis r=0 and arc 

 radius r=R. 

Due to the symmetry of the process the radiation flux )0(nW  equals zero if r=0, i.e. 0)0(div nW  

and the boundary condition could be written as 
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and therefore 02 C . 

If r=R the external radiation isn’t supposed to enter the plasma so flux parts along the internal 

normal to field boundary is expressed as 
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Then 
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The solution that satisfies the boundary conditions is 
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Required flux divergence is 
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To calculate the mean divergence of the whole cross section one is supposed to sum up the parts of 

the cyclic cross sections of the plasmatic cylinder on the whole surface and to divide into the same 

one 
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Summing over all frequency groups gives the net emission  
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3. RESULTS 

Equations (24), (25) has been solved for isothermal air plasma cylinder at the pressure 1 atm, in 

temperature range (10 000 – 30 000 K), and for various plasma radius (0.01, 0.1, 1, 10) cm. The 

frequency interval (0.01 – 6)10
15

 Hz has been divided into 12 frequency groups. Two different 

ways of the averaging of absorption coefficients has been provided in our previous work [2] – 

Planck and Rosseland means. Comparison of the net emission (25) calculated using different mean 

values of absorption coefficient is presented in Fig. 1 for four different radius of the plasma  

cylinder. 

 

Fig. 1. Net emission of air isothermal plasma cylinder as a function of temperature for various 

thicknesses of the plasma and various mean values of absorption coefficients. 

 

It can be seen that Rosseland averaging leads to lower values of the net emission which follows 

from the fact that Rosseland means underestimate the influence from the absorption peaks in the 

real absorption spectrum.  

In Figs. 2 a), b) comparison is made of our calculations of net emission in air arc plasma of two ra-

dii with the results of Aubrecht [3] and Gleizes [4]. Planck averaging gives the results which are in 

satisfactory agreement with calculations of the other authors. Discrepancies between our results 

and those of Aubrecht and Gleizes can be explained by different approximate methods of  



calculation. Both Aubrecht and Gleizes use the method of the net emission coefficient with the in-

tegration over the real absorption spectrum. 

 

a) 

 

b) 

Fig. 2. Comparison of net emission of air calculated by various authors. 

 

4. CONCLUSION 

Calculations have been made of the net emission of radiation in the isothermal cylindrical air  

plasma for various radii of the plasma column. The multigroup P1-approximation has been used. 

For the Planck averaging general agreement with other sources of similar data has been reached.  

Discrepancies occur by reason of using various approximate methods of the solution of the equa-

tion of radiation transfer. Under assumption of isothermal plasma the equation (11) can be solved 

analytically, and the calculation of the net emission (25) is then very simple. 
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